Scientists Find Worms that 'Recently' Evolved Ability to Regrow Heads

Scientists Find Worms that 'Recently' Evolved Ability to Regrow Heads

Bookmark and Share


An international group of researchers including biologists from the University of Maryland have found at least four species of marine ribbon worm illustrationworms independently evolved the ability to regrow a head after amputation.

Regeneration of amputated body parts is uncommon but does exist throughout the animal world—from salamanders, spiders and sea stars that can regrow appendages to a species of ribbon worm that can regenerate an entire individual from just a small sliver of tissue. But regenerative abilities were broadly assumed to be an ancient trait that some species managed to hold on to while most others lost through evolution.

This new study, published in the March 6, 2019 issue of Proceedings of the Royal Society B, turns that assumption on its head. In a survey of 35 species of marine ribbon worms, the researchers found the ability to regenerate an entire head, including a brain, evolved relatively recently in four of these species.

“This means that when we compare animal groups we cannot assume that similarities in their ability to regenerate are old and reflect shared ancestry,” said Alexandra Bely, associate professor of biology at UMD and one of the study’s authors. “We need to be more careful when comparing regeneration findings across different groups of animals.”

All animals have some degree of regenerative ability. Even humans regrow damaged skin over a wound. However, animal lineages that diverged very early in evolutionary history, such as sponges, hydroids and ctenophores, are often able to regrow entire individuals from even small amputated parts. As animals evolved greater complexity, regenerative abilities have become less dramatic and less common.

Estimating where and when changes in regenerative abilities occurred on the tree of life is fundamental to understanding how regeneration evolves and what factors influence the trait. Until now, scientific understanding of how regeneration evolved was based solely on studies of animals that lost regenerative abilities. That’s because all previously known gains in regenerative ability occurred too far in the distant past for comparative studies.

This new research presents the clearest documentation of animals gaining new regenerative abilities and could shed light on the characteristics necessary for the trait to evolve.

“The species we identify as having recently evolved head regeneration will make for excellent models for studying the emergence of new regeneration abilities in animals,” Bely said. “We can now ask such questions as what changes in molecular processes led to novel head regeneration ability.”

To conduct the study, the researchers collected ribbon worms along coasts of the U.S., Argentina, Spain and New Zealand from 2012 to 2014. They performed regeneration experiments on 22 species. They also obtained information on 13 other marine ribbon worm species from previous studies.

All of the species were able to restore themselves to complete individuals by re-growing back ends. Only eight species were able to regrow their heads and restore an entire individual from just the back portion of the body. Four of these were known from previous studies and four were new.

More surprising than the number of ribbon worms that could regrow heads was that the majority of them could not. Studies from the 1930s of the ribbon worm Lineaus sanguineus  showed it to be a champion of animal regeneration with the ability to regrow a whole body and head successfully from the equivalent of just one two-hundred-thousandths of an individual (that’s like re-growing a 150-pound person from just 0.012 ounces of tissue or roughly 1/16th of a teaspoon). That example saddled the entire phylum of marine ribbon worms (known as nemertea) with a reputation for being super regenerators.

The natural assumption was that it was an ancient trait passed down from a common ancestor that some ribbon worms began to lose as species diverged. However, with their survey of 35 species, the researchers reconstructed the evolutionary pattern of regeneration across the phylum and found it to be a more recently evolved ability, even among super regenerators like Lineaus sanguineus.

“The ancestor of this group of worms is inferred to have been unable to regenerate a head, but four separate groups subsequently evolved the ability to do so,” Bely said. “One of these origins is inferred to have occurred just 10 to 15 million years ago.”

In evolutionary terms, that’s recent history given that regenerative abilities are thought to have first evolved before the Cambrian Period more than 500 million years ago.

Opportunities to study gains in regenerative abilities can greatly improve scientists’ understanding of the developmental strategies that enable and enhance regeneration. For example, some of the non-head regenerating worms in the study survived months without heads. That could indicate a possible precursor to evolving the ability to regenerate a head, because surviving an amputation long enough for regeneration might be the first evolutionary step.

An additional co-author of the research paper from UMD is Eduardo E. Zattara (Ph.D. ’12, behavior, ecology, evolution, systematics).

This work was supported by a 2016 University of Maryland-Smithsonian Institution partnership Seed Grant: Do ribbon worms have somatic stem cells? (Bely AE, PI; Jon Norenberg, PI), Spanish Ministry of Economy and Competitiveness (Award No. BES- 2013-063551), and NSF (Award No. IOS-1030453

The research paper, “A phylum-wide survey reveals multiple independent gains of head regeneration in Nemertea,” Eduardo E. Zattara, Fernando A. Fernandez-Alvarez, Terra C. Hiebert, Alexandra E. Bely, and Jon L. Norenburg, was published in the journal Proceedings of the Royal Society B on March 6, 2019.

 

This article originally appeared on UMD Right Now.

March 6, 2019


Prev   Next

Current Headlines

UMD Division of Research Announces Maryland Catalyst Fund New Direction 2019 Award Winners

Jewell Lab Awarded Two NIH R01 Bioengineering Research Grants

As Home Remedies Rise, So Does Distrust of Flu Vaccine

Perfect Quantum Portal Emerges at Exotic Interface

UMD BRAKE Research Administration Training Team Visits Israel to Deliver Workshops

UMD Joins Race to Produce Universal Flu Vaccine

UMD Energy Start-Up receives $8M investment

NOAA Awards $175 Million to UMD for Earth System Studies

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar

Additional Resources

UM Newsdesk

Faculty Experts

Connect

social iconsFacebookTwitterLinkedInResearch News RSS Feed
Office of Technology Commercialization
2130 Mitchell Building
7999 Regents Dr.
University of Maryland
College Park, MD 20742

Phone: 301-405-3947  |  Fax: 301-314-9502
Email: umdtechtransfer@umd.edu

© Copyright 2013 University of Maryland

Did You Know

UMD's Neutral Buoyancy Research Facility, which simulates weightlessness, is one of only two such facilities in the U.S.